已知函数的最小值为.
(1)求的值;
(2)若为正实数,且,证明:.
在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.
(1)求C的直角坐标方程;
(2)设点M的直角坐标为, l与曲线C的交点为,求的值.
已知函数在上的最大值为.
(1)求的值;
(2)证明:函数在区间上有且仅有2个零点.
已知圆,椭圆()的短轴长等于圆半径的倍,的离心率为.
(1)求的方程;
(2)若直线与交于两点,且与圆相切,证明:.
如图,在四棱锥中,底面为正方形,底面,,为线段的中点,为线段上的动点.
(1)平面与平面是否互相垂直?如果垂直,请证明;如果不垂直,请说明理由.
(2)若,为线段的三等分点,求多面体的体积.
已知数列的前项和,且成等比数列.
(1)求数列的通项公式;
(2)设,求数列的前项和.