已知集合,则 ( )
A. B. C. D.
定义在上的函数,若已知其在内只取到一个最大值和一个最小值,且当时函数取得最大值为;当,函数取得最小值为.
(1)求出此函数的解析式;
(2)若将函数的图像保持横坐标不变纵坐标变为原来的得到函数,再将函数的图像向左平移个单位得到函数,已知函数的最大值为,求满足条件的的最小值;
(3)是否存在实数,满足不等式?若存在,求出的范围(或值),若不存在,请说明理由.
如图,为的中线的中点,过点的直线分别交两边于点,设,请求出的关系式,并记
(1)求函数的表达式;
(2)设的面积为,的面积为,且,求实数的取值范围.
(参考:三角形的面积等于两边长与这两边夹角正弦乘积的一半.)
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图(2)的抛物线段表示.
(1)写出图(1)表示的市场售价与时间的函数关系式;写出图(2)表示的种植成本与时间的函数关系式;
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/kg,时间单位:天.)
函数的最大值为3,其图象相邻两条对称轴之间的距离为.
(Ⅰ)求函数的解析式和当时的单调减区间;
(Ⅱ)的图象向右平行移动个长度单位,再向下平移1个长度单位,得到的图象,用“五点法”作出在内的大致图象.
已知,,是同一平面内的三个向量,其中.
(1)若,且,求的坐标;
(2)若,与的夹角为锐角,求实数的取值范围.