等比数列
中,
,则公比
_________
若
,且
,则
;
函数
的最小正周期是______.
已知函数
.
(1)若
在定义域上不单调,求
的取值范围;
(2)设
分别是
的极大值和极小值,且
,求
的取值范围.
已知斜率为1的直线
与椭圆
交于
,
两点,且线段
的中点为
,椭圆
的上顶点为
.
(1)求椭圆
的离心率;
(2)设直线
与椭圆
交于
两点,若直线
与
的斜率之和为2,证明:
过定点.
如图,在四棱锥
中,底面
是矩形,
平面
,
,点
、
分别在线段
、
上,且
,其中
,连接
,延长
与
的延长线交于点
,连接
.

(Ⅰ)求证:
平面
;
(Ⅱ)若
时,求二面角
的正弦值;
(Ⅲ)若直线
与平面
所成角的正弦值为
时,求
值.
