斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家列昂纳多斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”.它是这样一个数列:……在数学上,斐波那契数列以如下递推的方法定义: ,,,记其前项和为,设(为常数),则______(用表示),______(用常数表示)
已知命题“不等式”为真命题,则的取值范围为_______.
如图,以长方体的顶点为坐标原点,过的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为,则的坐标为_________.
抛物线上的一点到焦点的距离为2,则点的纵坐标是________.
我们通常称离心率为的椭圆为“黄金椭圆”.如图,已知椭圆,为顶点,为焦点,为椭圆上一点,满足下列条件能使椭圆为“黄金椭圆”的有( )
A.为等比数列
B.
C. 轴,且
D.四边形的内切圆过焦点
四边形内接于圆,,下列结论正确的有( )
A.四边形为梯形 B.圆的直径为7
C.四边形的面积为 D.的三边长度可以构成一个等差数列