设、是夹角为30°的异面直线,则满足条件“,,且”的平面,、( ).
A. 不存在 B. 有且只有一对 C. 有且只有两对 D. 有无数对
经过点的直线的倾斜角为,则( )
A. B. C. D.
如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )
A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱
下列结论正确的是( )
A.各个面都是三角形的几何体是三棱锥
B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥
C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥
D.圆锥的顶点与底面圆周上的任意一点的连线都是母线
已知函数f(x)=sinx,g(x)=lnx.
(1)求方程在[0,2π]上的解;
(2)求证:对任意的a∈R,方程f(x)=ag(x)都有解;
(3)设M为实数,对区间[0,2π]内的满足x1<x2<x3<x4的任意实数xi(1≤i≤4),不等式成立,求M的最小值.
在△ABC中,AB=6,AC=3,D为BC中点,,.
(1)若,求的值;
(2)若,求的值.