设是定义在上的奇函数,当时,,则( )
A. B. C. D.
已知集合,则满足条件的集合的个数为( )
A.1 B.2 C.3 D.4
已知集合,,则( )
A. B. C. D.
已知函数.
(1)求曲线的斜率为2的切线方程;
(2)证明:;
(3)确定实数的取值范围,使得存在,当时,恒有.
已知椭圆的离心率为,点在椭圆上,焦点为,圆O的直径为.
(1)求椭圆C及圆O的标准方程;
(2)设直线l与圆O相切于第一象限内的点P,且直线l与椭圆C交于两点.记 的面积为,证明:.
如图,在四棱锥中,底面为直角梯形,,,,平面平面,.
(1)求证:;
(2)求二面角的余弦值;
(3)在棱上是否存在点,使得平面?若存在,求的值?若不存在,说明理由.