已知是定义在上的奇函数,且,若且时,有成立.
(1)判断在上的单调性,并用定义证明;
(2)解不等式;
(3)若对所有的恒成立,求实数的取值范围.
设定义域为R的函数.
(1)在平面直角坐标系中作出函数f(x)的图象,并指出f(x)的单调区间(不需证明);
(2)若方程f(x)+5a=0有两个解,求出a的取值范围(不需严格证明,简单说明即可);
(3)设定义域为R的函数g(x)为偶函数,且当x≥0时,g(x)=f(x),求g(x)的解析式.
已知函数.
(1)求证:f(x)在(0,+∞)上是单调递增函数;
(2)若f(x)在上的值域是,求a的值.
设函数f(x)=若f(-2)=f(0),f(-1)=-3,求关于x的方程f(x)=x的解.
已知集合A={x|x2﹣2x﹣3≤0},B={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R}.
(1)若A∪B=A,求实数m的取值;
(2)若A∩B={x|0≤x≤3},求实数m的值;
(3)若A⊆,求实数m的取值范围.
已知奇函数在上为增函数,对任意的 恒成立,则的取值范围是_____________.