如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )
A.34 B.42 C.54 D.72
已知等比数列的公比为正数,且,则 ( )
A. B. C. D.
(1)当时,不等式恒成立,求实数的取值范围;
(2)已知函数,,如果函数有两个极值点、,求证:.(参考数据:,,,为自然对数的底数)
椭圆:()的离心率为,其左焦点到点的距离是.
(1)求椭圆的方程;
(2)若直线:被圆:截得的弦长为3,且与椭圆交于,两点,求△面积的最大值.
如图1,在直角中,,分别为的中点,连结并延长交于点,将沿折起,使平面平面,如图2所示.
(Ⅰ)求证:;
(Ⅱ)求平面与平面所成锐二面角的余弦值.
已知抛物线的焦点为,点为抛物线上一点,且.
(1)求抛物线的方程;
(2)不过原点的直线与抛物线交于不同两点,若,求的值.