满分5 > 高中数学试题 >

已知正方体,E,F分别是和CD的中点. (1)求异面直线AE与所成的角的大小; ...

已知正方体EF分别是CD的中点.

1)求异面直线AE所成的角的大小;

2)求证:平面.

 

(1)(2)证明见解析 【解析】 以为空间直角坐标系的原点,以所在的直线分别为轴,建立如图所示空间直角坐标系: (1)分别求出向量与的坐标表示,通过空间向量数量积的运算求出异面直线AE与所成的角的大小; (2)只要证明与平面.内两个不共线的向量垂直即可. 以为空间直角坐标系的原点,以所在的直线分别为轴,建立如图所示空间直角坐标系:. (1)设异面直线AE与所成的角为,, ,所以异面直线AE与所成的角的大小; (2), 由(1)可知:,而,平面, 所以平面.
复制答案
考点分析:
相关试题推荐

已知抛物线的顶点在原点,焦点在坐标轴上,点为抛物线上一点.

(1)求的方程; 

(2)若点上,过的两弦,若,求证:直线过定点.

 

查看答案

已知直线与椭圆相交于AB两点,当m变化时,求的最大值.

 

查看答案

已知函数.

1)求的最小正周期,并求其单调递减区间;

2)如果的内角ABC所对的边分别为abc,且满足,试求的取值范围.

 

查看答案

在数列中,,求数列的前n项和.

 

查看答案

已知P为椭圆上任意一点,是椭圆的两个焦点.的最小值为________.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.