满分5 > 高中数学试题 >

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. (Ⅰ)求...

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(Ⅰ)求椭圆方程;

(Ⅱ)设为椭圆右顶点,过椭圆的右焦点的直线与椭圆交于两点(异于),直线分别交直线两点. 求证:两点的纵坐标之积为定值.

 

(Ⅰ);(Ⅱ)详见解析. 【解析】 (Ⅰ)求出后可得椭圆方程. (Ⅱ)当直线的斜率不存在,计算可得两点的纵坐标之积为.当直线的斜率存在时,可设直线的方程为,,则,联立直线方程和椭圆方程,消去后利用韦达定理化简后可得定值. 【解析】 (Ⅰ)因为以原点为圆心,椭圆的短半轴长为半径的圆与直线相切, 所以半径等于原点到直线的距离,,即. 由离心率,可知,且,得. 故椭圆的方程为. (Ⅱ)由椭圆的方程可知. 若直线的斜率不存在,则直线方程为, 所以. 则直线的方程为,直线的方程为. 令,得,. 所以两点的纵坐标之积为. 若直线的斜率存在,设直线的方程为, 由得, 依题意恒成立. 设, 则. 设, 由题意三点共线可知, 所以点的纵坐标为.同理得点的纵坐标为. 所以 综上,两点的纵坐标之积为定值.
复制答案
考点分析:
相关试题推荐

目前,中国有三分之二的城市面临垃圾围城的窘境. 我国的垃圾处理多采用填埋的方式,占用上万亩土地,并且严重污染环境. 垃圾分类把不易降解的物质分出来,减轻了土地的严重侵蚀,减少了土地流失. 202051日起,北京市将实行生活垃圾分类,分类标准为厨余垃圾、可回收物、有害垃圾和其它垃圾四类 .生活垃圾中有30%~40%可以回收利用,分出可回收垃圾既环保,又节约资源. 如:回收利用1吨废纸可再造出0.8吨好纸,可以挽救17棵大树,少用纯碱240千克,降低造纸的污染排放75%,节省造纸能源消耗40%~50.

现调查了北京市5个小区12月份的生活垃圾投放情况,其中可回收物中废纸和塑料品的投放量如下表:

 

小区

小区

小区

小区

小区

废纸投放量(吨)

5

5.1

5.2

4.8

4.9

塑料品投放量(吨)

3.5

3.6

3.7

3.4

3.3

 

 

(Ⅰ)从5个小区中任取1个小区,求该小区12月份的可回收物中,废纸投放量超过5吨且塑料品投放量超过3.5吨的概率;

(Ⅱ)从5个小区中任取2个小区,记12月份投放的废纸可再造好纸超过4吨的小区个数,求的分布列及期望.

 

查看答案

如图,在三棱柱中,平面的中点为.

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.

 

查看答案

已知函数.

(Ⅰ)求的值;

(Ⅱ)求在区间上的最大值.

 

查看答案

定义域为的函数同时满足以下两条性质:

①存在,使得

②对于任意,有.

根据以下条件,分别写出满足上述性质的一个函数.

i)若是增函数,则_______

(ⅱ)若不是单调函数,则_______ .

 

查看答案

已知抛物线的焦点为,则的坐标为__________;过点的直线交抛物线两点,若,则的面积为__________

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.