已知,给定个整点,其中.
(Ⅰ)当时,从上面的个整点中任取两个不同的整点,求的所有可能值;
(Ⅱ)从上面个整点中任取个不同的整点,.
(i)证明:存在互不相同的四个整点,满足,;
(ii)证明:存在互不相同的四个整点,满足,.
已知函数.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)讨论函数的单调性;
(Ⅲ)对于任意,,都有,求实数的取值范围.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(Ⅰ)求椭圆方程;
(Ⅱ)设为椭圆右顶点,过椭圆的右焦点的直线与椭圆交于,两点(异于),直线,分别交直线于,两点. 求证:,两点的纵坐标之积为定值.
目前,中国有三分之二的城市面临“垃圾围城”的窘境. 我国的垃圾处理多采用填埋的方式,占用上万亩土地,并且严重污染环境. 垃圾分类把不易降解的物质分出来,减轻了土地的严重侵蚀,减少了土地流失. 2020年5月1日起,北京市将实行生活垃圾分类,分类标准为厨余垃圾、可回收物、有害垃圾和其它垃圾四类 .生活垃圾中有30%~40%可以回收利用,分出可回收垃圾既环保,又节约资源. 如:回收利用1吨废纸可再造出0.8吨好纸,可以挽救17棵大树,少用纯碱240千克,降低造纸的污染排放75%,节省造纸能源消耗40%~50%.
现调查了北京市5个小区12月份的生活垃圾投放情况,其中可回收物中废纸和塑料品的投放量如下表:
| 小区 | 小区 | 小区 | 小区 | 小区 |
废纸投放量(吨) | 5 | 5.1 | 5.2 | 4.8 | 4.9 |
塑料品投放量(吨) | 3.5 | 3.6 | 3.7 | 3.4 | 3.3 |
(Ⅰ)从这5个小区中任取1个小区,求该小区12月份的可回收物中,废纸投放量超过5吨且塑料品投放量超过3.5吨的概率;
(Ⅱ)从这5个小区中任取2个小区,记为12月份投放的废纸可再造好纸超过4吨的小区个数,求的分布列及期望.
如图,在三棱柱中,平面,,,的中点为.
(Ⅰ)求证:;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.
已知函数.
(Ⅰ)求的值;
(Ⅱ)求在区间上的最大值.