设,,记.
(1)若,,当时,求的最大值;
(2)若,,且方程有两个不相等的实根、,求的取值范围;
(3)若,,,且a、b、c是三角形的三边长,试求满足等式:有解的最大的x的范围.
已知函数.
(1)求函数的定义域D,并判断的奇偶性;
(2)如果当时,的值域是,求a的值;
(3)对任意的m,,是否存在,使得,若存在,求出t,若不存在,请说明理由.
某市对城市路网进行改造,拟在原有a个标段(注:一个标段是指一定长度的机动车道)的基础上,新建x个标段和n个道路交叉口,其中n与x满足n=ax+5.已知新建一个标段的造价为m万元,新建一个道路交叉口的造价是新建一个标段的造价的k倍.
(1)写出新建道路交叉口的总造价y(万元)与x的函数关系式;
(2)设P是新建标段的总造价与新建道路交叉口的总造价之比.若新建的标段数是原有标段数的20%,且k≥3.问:P能否大于,说明理由.
已知函数为偶函数.
(1)求的值;
(2)若方程有解,求实数的范围.
已知,,且是的必要不充分条件.求实数的取值范围.
设、、是定义域为的三个函数,对于命题:①若、、均为增函数,则、、中至少有一个增函数;②若、、均是以为周期的函数,则、、均是以为周期的函数,下列判断正确的是( )
A.①和②均为真命题
B.①和②均为假命题
C.①为真命题,②为假命题
D.①为假命题,②为真命题