对于集合,定义函数
对于两个集合,,定义运算.
(1)若,,写出与的值,并求出;
(2)证明:;
(3)证明:运算具有交换律和结合律,即,.
已知函数
(1)判断的奇偶性并证明;
(2)判断的单调性并说明理由;
(3)若对任意恒成立,求的取值范围.
在平面直角坐标系中,角,β 的顶点与坐标原点重合,始边为 的非负半轴,终边分别与单位圆交于两点,两点的纵坐标分别为
(1)求的值;
(2)求 的值.
已知函数,, .
(1)求的解析式和最小正周期;
(2)求在区间上的最大值和最小值.
已知集合,全集.
(1)求 ;
(2)设,若,求的取值范围.
某池塘中原有一块浮草,浮草蔓延后的面积(平方米)与时间(月)之间的函数关系式是且,它的图象如图所示,给出以下命题:①池塘中原有浮草的面积是平方米;②第个月浮草的面积超过平方米;③浮草每月增加的面积都相等;④若浮草面积达到平方米,平方米,平方米所经过的时间分别为,则.其中正确命题的序号有_____.(注:请写出所有正确结论的序号)