在底面为平行四边形的四棱锥P﹣ABCD中,AB⊥AC,PA⊥平面ABCD,点E是PD的中点.
(1)求证:PB∥平面AEC;
(2)求证:平面EAC⊥平面PAB.
已知圆C的圆心为(1,1),直线与圆C相切.
(1)求圆C的标准方程;
(2)若直线过点(2,3),且被圆C所截得的弦长为2,求直线的方程.
已知函数(a∈R).
(1)若函数f(x)为奇函数,求实数a的值;
(2)判断并用定义证明函数f(x)的单调性.
已知两条直线l1:x+2y﹣6=0和l2:x﹣2y+2=0的交点为P.求:
(1)过点P与Q(1,4)的直线方程;
(2)过点P且与直线x﹣3y﹣1=0垂直的直线方程.
如图,有一个水平放置的透明无盖的正方体容器,容器高4cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为3cm,如果不计容器的厚度,则球的表面积为_____.
已知f(x)=2x+2-x,若f(a)=3,则f(2a)等于 .