方程的解_________.
对于数列,定义, .
(1) 若,是否存在,使得?请说明理由;
(2) 若, ,求数列的通项公式;
(3) 令,求证:“为等差数列”的充要条件是“的前4项为等差数列,且为等差数列”.
设直线与抛物线相交于不同两点、,与圆相切于点,且为线段中点.
(1) 若是正三角形(是坐标原点),求此三角形的边长;
(2) 若,求直线的方程;
(3) 试对进行讨论,请你写出符合条件的直线的条数(直接写出结论).
如图所示,是某海湾旅游区的一角,其中,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸和上分别修建观光长廊和AC,其中是宽长廊,造价是元/米,是窄长廊,造价是元/米,两段长廊的总造价为120万元,同时在线段上靠近点的三等分点处建一个观光平台,并建水上直线通道(平台大小忽略不计),水上通道的造价是元/米.
(1) 若规划在三角形区域内开发水上游乐项目,要求的面积最大,那么和的长度分别为多少米?
(2) 在(1)的条件下,建直线通道还需要多少钱?
设函数,函数的图像与函数的图像关于轴对称.
(1)若,求的值;
(2)若存在,使不等式成立,求实数的取值范围.
直三棱柱中,底面为等腰直角三角形,,,,是侧棱上一点,设.
(1) 若,求的值;
(2) 若,求直线与平面所成的角.