在等差数列中,公差为,且,则___________.
双曲线:的焦点坐标为__________.
已知,,若与平行,则________.
在平面直角坐标系上,有一点列,设点的坐标(),其中. 记,,且满足().
(1)已知点,点满足,求的坐标;
(2)已知点,(),且()是递增数列,点在直线:上,求;
(3)若点的坐标为,,求的最大值.
如图,椭圆的左、右顶点分别为A、B,双曲线以A、B为顶点,焦距为,点P是上在第一象限内的动点,直线AP与椭圆相交于另一点Q,线段AQ的中点为M,记直线AP的斜率为为坐标原点.
(1)求双曲线的方程;
(2)求点M的纵坐标的取值范围;
(3)是否存在定直线使得直线BP与直线OM关于直线对称?若存在,求直线的方程;若不存在,请说明理由.
如图所示,沿河有A、B两城镇,它们相距千米.以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放.两城镇可以单独建污水处理厂,或者联合建污水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送).依据经验公式,建厂的费用为(万元),表示污水流量;铺设管道的费用(包括管道费)(万元),表示输送污水管道的长度(千米).已知城镇A和城镇B的污水流量分别为、,、两城镇连接污水处理厂的管道总长为千米.假定:经管道输送的污水流量不发生改变,污水经处理后直接排入河中.请解答下列问题(结果精确到):
(1)若在城镇A和城镇B单独建厂,共需多少总费用?
(2)考虑联合建厂可能节约总投资,设城镇A到拟建厂的距离为千米,求联合建厂的总费用与的函数关系式,并求的取值范围.