函数
(1)求不等式的解集;
(2)若的最小值为,且实数满足,求证:
在平面直角坐标系中,曲线,直线的参数方程为(t为参数),其中,以坐标原点O为极点,轴非负半轴为极轴,建立极坐标系.
(1)求曲线的极坐标方程和直线的普通方程;
(2)设,的极坐标方程,A,B分别为直线与曲线异于原点的公共点,当时,求直线的斜率;
已知函数
(1)讨论的单调性;
(2)若方程有两个不相等的实数根,求证:
已知椭圆C:过点,左焦点
(1)求椭圆C的标准方程;
(2)过点F作于x轴不重合的直线l,l与椭圆交于A,B两点,点A在直线上的投影N与点B的连线交x轴于D点,D点的横坐标是否为定值?若是,请求出定值;若不是,请说明理由
“团购”已经渗透到我们每个人的生活,这离不开快递行业的发展,下表是2013-2017年全国快递业务量(x亿件:精确到0.1)及其增长速度(y%)的数据
(1)试计算2012年的快递业务量;
(2)分别将2013年,2014年,…,2017年记成年的序号t:1,2,3,4,5;现已知y与t具有线性相关关系,试建立y关于t的回归直线方程;
(3)根据(2)问中所建立的回归直线方程,估算2019年的快递业务量
附:回归直线的斜率和截距地最小二乘法估计公式分别为:,
如图,四棱锥中,底面,,为的中点
(1)证明:平面
(2)若是边长为2的等边三角形,求二面角的余弦值