明代数学家吴敬所著的《九章算术比类大全》中,有一道数学命题叫“宝塔装灯”,内容为:“远望魏巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(“倍加增”指灯的数量从塔的顶层到底层按公比为2的等比数列递增),根据此诗,可以得出塔的顶层有( )
A.3盏灯 B.192盏灯 C.195盏灯 D.200盏灯
若,则下列命题正确的个数( )
①;②;③;④
A.0 B.1 C.2 D.3
设等差数列的前项和为,已知,则( )
A.24 B.20 C.16 D.18
设,则“”是“”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
已知,则复数( )
A. B. C. D.
对于函数,若存在正常数,使得对任意的,都有成立,我们称函数为“同比不减函数”.
(1)求证:对任意正常数,都不是“同比不减函数”;
(2)若函数是“同比不减函数”,求的取值范围;
(3)是否存在正常数,使得函数为“同比不减函数”,若存在,求的取值范围;若不存在,请说明理由.