在四面体A-BCD中,有两条棱的长为,其余棱的长度都为1;
(1)若,且,求二面角A-BC-D的余弦值;
(2)求a的取值范围,使得这样的四面体是存在的;
如图,在直四棱柱中,,:
(1)求证:平面;
(2)现将与四棱柱形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为,写出的解析式;(直接写出答案,不必说明理由)
如图,AB是圆柱的一条母线,已知BC过底面圆的圆心O,D是圆O上不与点B、C重合的任意一点,:
(1)求直线AC与平面ABD所成角的大小;
(2)求点B到平面ACD的距离;
(3)将四面体ABCD绕母线AB旋转一周,求由旋转而成的封闭几何体的体积;
(1)在复数范围内解方程:(i为虚数单位);
(2)设系数为整数的一元二次方程的两根恰为(l)中方程的解,求的最小值;
相同正四棱锥底面重合组成一个八面体,可放于棱长为1的正方体中,重合的底面与正方体某面平行,各顶点均在正方体表面上(如图),该八面体体积的可能值有( )
A.1个 B.2个 C.3个 D.无数个
下列四个命题:①任意两条直线都可以确定一个平面;②若两个平面有3个不同的公共点,则这两个平面重合;③直线a,b,c,若a与b共面,b与c共面,则a与c共面;④若直线l上有一点在平面α外,则l在平面α外.其中错误命题的个数是( )
A.1 B.2 C.3 D.4