在平面直角坐标系中,已知椭圆过点,且离心率.
(1)求椭圆的方程;
(2)直线的斜率为,直线与椭圆交于、两点,求的面积的最大值.
如图,已知正方形和矩形所在的平面互相垂直,交于点,为的中点,.
(1)求证:平面;
(2)求二面角的大小.
已知动圆过定点P(4,0),且在y轴上截得的弦MN的长为8.
(1)求动圆圆心C的轨迹方程;
(2)过点(2,0)的直线l与动圆圆心C的轨迹交于A,B两点,求证:是一个定值.
如图,在边长为的菱形中,,点,分别是边,的中点,.沿将△翻折到△,连接,得到如图的五棱锥,且.
(1)求证:平面;
(2)求四棱锥的体积.
已知圆的内接矩形的一条对角线上的两个顶点坐标分别为.
(1)求圆的方程;
(2)求直线上的点到圆上的点的最近距离.
给定如下两个命题:命题“曲线是焦点在轴上的椭圆,其中为常数”;命题“曲线是焦点在轴上的双曲线,其中为常数”.已知命题“”为假命题,命题“”为真命题,求实数的取值范围.