已知圆,A为圆O1上任意一点,点D在线段上.,已知,.
(1)求点D的轨迹方程H;
(2)若直线与方程H所表示的图像交于E,F两点,是椭圆上任意一点.若OG平分弦EF,且,,试判断四边形OEGF形状并证明.
已知抛物线E:焦点F,过点F且斜率为2的直线与抛物线交于A、B两点,且.
(1)求抛物线E的方程;
(2)设O是坐标原点,P,Q是抛物线E上分别位于x轴两侧的两个动点,且
①证明:直线PQ必过定点,并求出定点G的坐标;
②过G作PQ的垂线交抛物线于C,D两点,求四边形PCQD面积的最小值.
若圆的内接矩形的周长最大值为.
(1)求圆O的方程;
(2)若过点的直线与圆O交于A,B两点,如图所示,且直线的斜率,求的取值范围.
已知双曲线C:与双曲线有相同的渐近线,且双曲线C过点.
(1)若双曲线C的左、右焦点分别为,,双曲线C上有一点P,使得,求△的面积;
(2)过双曲线C的右焦点作直线l与双曲线右支交于A,B两点,若△的周长是,求直线l的方程.
已知点F是椭圆C:的右焦点,且其短轴长,若点满足(其中点O为坐标原点).
(1)求椭圆的方程;
(2)若斜率为1的直线与椭圆C交于P,Q两点,与y轴交于点B,若点P是线段BQ的中点,求该直线方程;若,求实数a的值;
已知直线,.
(1)若,求实数a的值;
(2)点关于直线l1的对称点Q在直线l2上,求实数a的值.