如图,在四棱锥中,侧棱平面,为的中点,,,,.
(1)求二面角的余弦值;
(2)在线段上是否存在点,使得平面?若存在,求出点的位置,若不存在,说明理由.
如图,为信号源点,、、是三个居民区,已知、都在的正东方向上,,,在的北偏西45°方向上,,现要经过点铺设一条总光缆直线(在直线的上方),并从、、分别铺设三条最短分支光缆连接到总光缆,假设铺设每条分支光缆的费用与其长度的平方成正比,比例系数为1元/,设,(),铺设三条分支光缆的总费用为(元).
(1)求关于的函数表达式;
(2)求的最小值及此时的值.
若向量,在函数
的图象中,对称中心到对称轴的最小距离为且当的最大值为1.
(I)求函数的解析式;
(II)求函数的单调递增区间.
对数列,如果及,使成立,其中,则称为阶递归数列.给出下列三个结论:
① 若是等比数列,则为阶递归数列;
② 若是等差数列,则为阶递归数列;
③ 若数列的通项公式为,则为阶递归数列.
其中正确结论的个数是( )
A.0 B.1 C.2 D.3
一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( )
A. B. C. D.
“,”是“”的( ).
A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.即不充分也不必要条件