已知集合,,则( )
A. B. C. D.
设数列共有项,记该数列前项中的最大项为,该数列后项中的最小项为,.
(1)若数列的通项公式为,求数列的通项公式;
(2)若数列满足,,求数列的通项公式;
(3)试构造一个数列,满足,其中是公差不为零的等差数列,是等比数列,使得对于任意给定的正整数,数列都是单调递增的,并说明理由.
如图,在平面直角坐标系中,设点是椭圆上一点,从原点向圆作两条切线分别与椭圆交于点,直线的斜率分别记为.
(1)若圆与轴相切于椭圆的右焦点,求圆的方程;
(2)若.
①求证:;
②求的最大值
如图,在四棱锥中,侧棱平面,为的中点,,,,.
(1)求二面角的余弦值;
(2)在线段上是否存在点,使得平面?若存在,求出点的位置,若不存在,说明理由.
如图,为信号源点,、、是三个居民区,已知、都在的正东方向上,,,在的北偏西45°方向上,,现要经过点铺设一条总光缆直线(在直线的上方),并从、、分别铺设三条最短分支光缆连接到总光缆,假设铺设每条分支光缆的费用与其长度的平方成正比,比例系数为1元/,设,(),铺设三条分支光缆的总费用为(元).
(1)求关于的函数表达式;
(2)求的最小值及此时的值.
若向量,在函数
的图象中,对称中心到对称轴的最小距离为且当的最大值为1.
(I)求函数的解析式;
(II)求函数的单调递增区间.