若点在函数的图象上,则( )
A. B. C. D.
设集合,,则( )
A. B.
C. D.
已知圆,圆,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.
(1)求曲线C的方程;
(2)设不经过点的直线l与曲线C相交于A,B两点,直线QA与直线QB的斜率均存在且斜率之和为-2,证明:直线l过定点.
设函数.
(1)当时,求在点处的切线方程;
(2)当时,判断函数在区间是否存在零点?并证明.
如图,三棱锥D-ABC中,,E,F分别为DB,AB的中点,且.
(1)求证:平面平面ABC;
(2)求点D到平面CEF的距离.
高三年级某班50名学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间为:.其中a,b,c成等差数列且.物理成绩统计如表.(说明:数学满分150分,物理满分100分)
分组 | |||||
频数 | 6 | 9 | 20 | 10 | 5 |
(1)根据频率分布直方图,请估计数学成绩的平均分;
(2)根据物理成绩统计表,请估计物理成绩的中位数;
(3)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”同学总数为6人,从数学成绩为“优”的同学中随机抽取2人,求两人恰好均为物理成绩“优”的概率.