设集合,,则( )
A. B. C. D.
已知函数,其导函数设为.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数有两个极值点,,试用表示;
(Ⅲ)在(Ⅱ)的条件下,若的极值点恰为的零点,试求,这两个函数的所有极值之和的取值范围.
已知抛物线过点,且P到抛物线焦点的距离为2直线过点,且与抛物线相交于A,B两点.
(Ⅰ)求抛物线的方程;
(Ⅱ)若点Q恰为线段AB的中点,求直线的方程;
(Ⅲ)过点作直线MA,MB分别交抛物线于C,D两点,请问C,D,Q三点能否共线?若能,求出直线的斜率;若不能,请说明理由.
已知等差数列的前项和为,且,.数列满足,.
(Ⅰ)求数列和的通项公式;
(Ⅱ)求数列的前项和,并求的最小值.
如图,平面平面,且,.
(1)求证:;
(2)求直线与平面所成角的余弦值.
已知角的顶点与原点重合,始边与轴的非负半轴重合,终边经过点.
(Ⅰ)求的值;
(Ⅱ)求函数的最小正周期与单调递增区间.