设抛物线Γ的方程为y2=4x,点P的坐标为(1,1).
(1)过点P,斜率为﹣1的直线l交抛物线Γ于U,V两点,求线段UV的长;
(2)设Q是抛物线Γ上的动点,R是线段PQ上的一点,满足2,求动点R的轨迹方程;
(3)设AB,CD是抛物线Γ的两条经过点P的动弦,满足AB⊥CD.点M,N分别是弦AB与CD的中点,是否存在一个定点T,使得M,N,T三点总是共线?若存在,求出点T的坐标;若不存在,说明理由.
如图,长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=m,点M是棱CD的中点.
(1)求异面直线B1C与AC1所成的角的大小;
(2)是否存在实数m,使得直线AC1与平面BMD1垂直?说明理由;
(3)设P是线段AC1上的一点(不含端点),满足λ,求λ的值,使得三棱锥B1﹣CD1C1与三棱锥B1﹣CD1P的体积相等.
设λ是正实数,(1+λx)20的二项展开式为a0+a1x+a2x2+…+a20x20,其中a0,a1,…,a20 ,…,均为常数
(1)若a3=12a2,求λ的值;
(2)若a5≥an对一切n∈{0,1,…,20}均成立,求λ的取值范围.
已知椭圆E的方程为y2=1,其左焦点和右焦点分别为F1,F2,P是椭圆E上位于第一象限的一点
(1)若三角形PF1F2的面积为,求点P的坐标;
(2)设A(1,0),记线段PA的长度为d,求d的最小值.
已知m是实数,关于x的方程E:x2﹣mx+(2m+1)=0.
(1)若m=2,求方程E在复数范围内的解;
(2)若方程E有两个虚数根x1,x2,且满足|x1﹣x2|=2,求m的值.
设集合,那么集合中满足条件的元素个数为( )
A.60 B.90 C.120 D.130