过点作直线,当的斜率为何值时.
(1)将圆平分?
(2)与圆相切?
(3)与圆相交且所截得弦长?
如图,在长方体中,点是棱的中点,点 在棱上,且(为实数).
(1)求二面角的余弦值;
(2)当时,求直线与平面所成角的正弦值的大小;
(3)求证:直线与直线不可能垂直.
计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多1年的年入流量超过120的概率;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:
年入流量 |
|
|
|
发电量最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
在中,,且.
(1)求边长;
(2)求边上中线的长.
设是等差数列,是各项都为正数的等比数列,且,,
(1)求数列,的通项公式;
(2)设数列的前项和为试比较与6的大小.
已知函数(为实数常数)
(1)当时,求函数在上的单调区间;
(2)当时,成立,求证:.