某校高三数学组有5名党员教师,他们一天中在“学习强国”平台上的学习积分依次为35,35,41,38,51,则这5名党员教师学习积分的平均值为_______.
已知复数z满足1 i z=2i,其中i 是虚数单位,则z的模为_______.
已知集合A=1,0,2,B={1,1,2},则A∩B=________.
如图,在四棱锥中,底面为正方形,侧棱底面,为棱的中点,.
(Ⅰ)求证:;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)求二面角的余弦值.
正方体ABCD-A1B1C1D1 的棱长为 2,且AC 与BD 交于点O,E 为棱DD1 中点,以A 为原点,建立空间直角坐标系A-xyz,如图所示.
(Ⅰ)求证:B1O⊥平面EAC;
(Ⅱ)若点F 在EA 上且B1F⊥AE,试求点F 的坐标;
(Ⅲ)求二面角B1-EA-C 的正弦值.
已知椭圆的焦点和长轴长.
(1)设直线交椭圆于两点,求线段的中点坐标.
(2)求过点的直线被椭圆所截弦的中点的轨迹方程.