已知集合,,则( )
A.或 B.或
C. D.
已知函数.
(Ⅰ)若,求实数的取值范围;
(Ⅱ)若不等式恒成立,求实数的取值范围.
已知直线的参数方程为(为参数,),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,射线,分别与曲线交于三点(不包括极点).
(Ⅰ)求证:;
(Ⅱ)当时,若两点在直线上,求与的值.
已知函数,.
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,都有成立,求的取值范围;
(Ⅲ)试问过点可作多少条直线与曲线相切?并说明理由.
已知椭圆:的离心率为,过左焦点的直线与椭圆交于,两点,且线段的中点为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设为上一个动点,过点与椭圆只有一个公共点的直线为,过点与垂直的直线为,求证:与的交点在定直线上,并求出该定直线的方程.
如图,是圆的直径,点是圆上异于,的点,直线平面,,分别是,的中点.
(Ⅰ)记平面与平面的交线为,试判断直线与平面的位置关系,并加以证明;
(Ⅱ)设,求二面角大小的取值范围.