如图,、、、为正方形各边上的点,图中曲线为圆弧,两圆弧分别以、为圆心,、为半径(为正方形的中心).现向该正方形内随机抛掷枚豆子,则该枚豆子落在阴影部分的概率为( )
A. B.
C. D.
已知复数满足,其中为虚数单位,则的共轭复数的虚部为( )
A. B. C. D.
已知集合,,则( )
A.或 B.或
C. D.
已知函数.
(Ⅰ)若,求实数的取值范围;
(Ⅱ)若不等式恒成立,求实数的取值范围.
已知直线的参数方程为(为参数,),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,射线,分别与曲线交于三点(不包括极点).
(Ⅰ)求证:;
(Ⅱ)当时,若两点在直线上,求与的值.
已知函数,.
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,都有成立,求的取值范围;
(Ⅲ)试问过点可作多少条直线与曲线相切?并说明理由.