设复数,其中xnyn∈R,n∈N*,i为虚数单位,,z1=3+4i,复数zn在复平面上对应的点为Zn.
(1)求复数z2,z3,z4的值;
(2)是否存在正整数n使得?若存在,求出所有满足条件的;若不存在,请说明理由;
(3)求数列的前项之和.
在平面直角坐标系xOy内,动点P到定点F(﹣1,0)的距离与P到定直线x=﹣4的距离之比为.
(1)求动点P的轨迹C的方程;
(2)若轨迹C上的动点N到定点M(m,0)(0<m<2)的距离的最小值为1,求m的值.
(3)设点A、B是轨迹C上两个动点,直线OA、OB与轨迹C的另一交点分别为A1、B1,且直线OA、OB的斜率之积等于,问四边形ABA1B1的面积S是否为定值?请说明理由.
设函数(a>0且a≠1)是奇函数.
(1)求常数k的值;
(2)若已知f(1)=,且函数在区间[1,+∞])上的最小值为—2,求实数m的值.
已知x∈R,设,,记函数.
(1)求函数取最小值时x的取值范围;
(2)设△ABC的角A,B,C所对的边分别为a,b,c,若,,求△ABC的面积S的最大值.
如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度(图②),且倾斜时底面的一条棱始终在桌面上(图①、②均为容器的纵截面).
(1)要使倾斜后容器内的溶液不会溢出,角的最大值是多少?
(2)现需要倒出不少于的溶液,当时,能实现要求吗?请说明理由.
已知数列的通项公式为,则数列( )
A.有最大项,没有最小项 B.有最小项,没有最大项
C.既有最大项又有最小项 D.既没有最大项也没有最小项