设函数(且)是奇函数.
(1)求常数的值;
(2)设,试判断函数在上的单调性,并解关于的不等式.
已知,设,,记函数.
(1)求函数的最小正周期和单调递增区间;
(2)设△的角,,所对的边分别为,,,若,,,求△的面积.
如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度(图②),且倾斜时底面的一条棱始终在桌面上(图①、②均为容器的纵截面).
(1)要使倾斜后容器内的溶液不会溢出,角的最大值是多少?
(2)现需要倒出不少于的溶液,当时,能实现要求吗?请说明理由.
已知等比数列的各项都是正数,且成等差数列,则
A. B. C. D.
若椭圆的焦距为,则的值是( )
A. B. C. D.
下列四个命题:①任意两条直线都可以确定一个平面;②若两个平面有3个不同的公共点,则这两个平面重合;③直线a,b,c,若a与b共面,b与c共面,则a与c共面;④若直线l上有一点在平面α外,则l在平面α外.其中错误命题的个数是( )
A.1 B.2 C.3 D.4