某海滨浴场一天的海浪高度是时间的函数,记作,下表是某天各时的浪高数据:
0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | |
1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
(1)选用一个三角函数来近似描述这个海滨浴场的海浪高度与时间的函数关系;
(2)依据规定,当海浪高度不少于时才对冲浪爱好者开放海滨浴场,请依据(1)的结论,判断一天内的至之间,有多少时间可供冲浪爱好者进行冲浪?
如图,某地一天从3~15时的温度变化曲线近似满足函数,其中.(参考数据:)
(1)求这段曲线的函数解析式;
(2)计算这天10时的温度是多少.
下图表示相对于平均海平面的某海湾的水面高度在某天0~24时的变化情况,则水面高度h关于时间t的函数解析式为________.
某城市一年中12个月的平均气温与月份的关系可近似地用三角函数来表示,已知6月份的月平均气温最高,为,12月份的月平均气温最低,为,则10月份的平均气温值为__________.
一种波的波形为函数的图象,若其在区间上至少有两个波峰(图象的最高点),则正整数t的最小值是_________.
函数y=sinωx(ω>0)的部分图象如图所示,点A,B是最高点,点C是最低点,若△ABC是直角三角形,则ω的值为____.