已知抛物线,直线与E交于A,B两点,且,其中O为坐标原点.
(1)求抛物线E的方程;
(2)设点,直线CA,CB的斜率分别为,试写出的一个关系式;并加以证明.
如图,四棱锥P-ABCD的底面ABCD为正方形,,E,F分别是棱PC,AB的中点.
(1)求证:平面PAD;
(2)若,求直线EF与平面PAB所成角的正弦值.
已知圆C以点为圆心,且被直线截得的弦长为.
(1)求圆C的标准方程;
(2)若直线l经过点,且与圆C相切,求直线l的方程.
已知语句p:方程表示圆心在第一象限的圆;语句q:方程表示双曲线.若为真命题,求实数m的取值范围.
设为椭圆的两个焦点,点P在C上,e为C的离心率.若是等腰直角三角形,则________;若是等腰钝角三角形,则e的取值范围是________.
如图,在多面体ABCDEF中,平面平面ABCD,是正三角形,四边形ABCD是正方形,,,则多面体ABCDEF的体积为________.