满分5 > 高中数学试题 >

焦点在x轴上的椭圆C:经过点,椭圆C的离心率为.,是椭圆的左、右焦点,P为椭圆上...

焦点在x轴上的椭圆C经过点,椭圆C的离心率为是椭圆的左、右焦点,P为椭圆上任意点.

1)求椭圆的标准方程;

2)若点M的中点(O为坐标原点),过M且平行于OP的直线l交椭圆CAB两点,是否存在实数,使得;若存在,请求出的值,若不存在,请说明理由.

 

(1)(2)存在满足条件,详见解析 【解析】 (1)根据所给条件列出方程组,求解即可。 (2)对直线的斜率存在与否分类讨论,当斜率存在时,设直线的方程为,,,联立直线与椭圆方程,利用韦达定理,即可表示出、、,则可求。 【解析】 (1)由已知可得,解得,, 所以椭圆的标准方程为. (2)若直线的斜率不存在时,,, 所以; 当斜率存在时,设直线的方程为,,. 联立直线与椭圆方程,消去y,得, 所以. 因为,设直线的方程为, 联立直线与椭圆方程,消去,得,解得. , , 同理,, 因为, ,故,存在满足条件, 综上可得,存在满足条件.
复制答案
考点分析:
相关试题推荐

在三棱柱中,均为等边三角形,OBC的中点.

1)证明:平面平面ABC

2)在棱上确定一点M,使得二面角的大小为.

 

查看答案

已知抛物线,直线E交于AB两点,且,其中O为坐标原点.

1)求抛物线E的方程;

2)设点,直线CACB的斜率分别为,试写出的一个关系式;并加以证明.

 

查看答案

如图,四棱锥P-ABCD的底面ABCD为正方形,EF分别是棱PCAB的中点.

1)求证:平面PAD

2)若,求直线EF与平面PAB所成角的正弦值.

 

查看答案

已知圆C以点为圆心,且被直线截得的弦长为.

1)求圆C的标准方程;

2)若直线l经过点,且与圆C相切,求直线l的方程.

 

查看答案

已知语句p方程表示圆心在第一象限的圆;语句q方程表示双曲线.为真命题,求实数m的取值范围.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.