已知
位数满足下列条件:①各个数字只能从集合
中选取;②若其中有数字
,则在
的前面不含
,将这样的
位数的个数记为
;
(1)求
、
;
(2)探究
与
之间的关系,求出数列
的通项公式;
(3)对于每个正整数
,在
与
之间插入
个
得到一个新数列
,设
是数列
的前
项和,试探究
能否成立,写出你探究得到的结论并给出证明;
已知双曲线
的左右顶点分别为
.直线
和两条渐近线交于点
,点
在第一象限且
,
是双曲线上的任意一点.
(1)求双曲线的标准方程;
(2)是否存在点P使得
为直角三角形?若存在,求出点P的个数;
(3)直线
与直线
分别交于点
,证明:以
为直径的圆必过定点.
函数
对任意的
满足:
,当
时,![]()
(1)求出函数在R上零点;
(2)求满足不等式
的实数
的范围.
如图,把长为6,宽为3的矩形折成正三棱柱
,三棱柱的高度为3,矩形的对角线和三棱柱的侧棱
的交点记为E,F.
(1)求三棱柱
的体积;
(2)求三棱柱中异面直线
与
所成角的大小.

某小区打造休闲场地,将一块直角三角形空地ABC用一条长为16m的道路MN分成两部分(点M在边AB上).分别种植花卉和铺设草坪,其中花卉面积为
,草坪面积为
,且
,已知
,求
的最大值(本题中道路都指线段).
已知函数
,集合
,若不相等的实数
且都有
,则满足条件的
(不考虑
的顺序)的组数为( )
A.36 B.58 C.62 D.74
