设集合,,则_______________.
若,则_______.
设满足以下两个条件的有穷数列为阶“期待数列”:①;②.
(1)若等比数列为阶“期待数列”,求公比;
(2)若一个等差数列既是阶“期待数列”又是递增数列,求该数列的通项公式;
(3)记阶“期待数列” 的前项和为,求证;数列不能为阶“期待数列”.
定义:直线关于圆的圆心距单位圆心到直线的距离与圆的半径之比.
(1)设圆,求过点的直线关于圆的圆心距单位的直线方程.
(2)若圆与轴相切于点,且直线关于圆的圆心距单位,求此圆的方程.
(3)是否存在点,使过点的任意两条互相垂直的直线分别关于相应两圆与的圆心距单位始终相等?若存在,求出相应的点坐标;若不存在,请说明理由.
某地拟建造一座体育馆,其设计方案侧面的外轮廓线如图所示:曲线是以点为圆心的圆的一部分,其中,是圆的切线,且,曲线是抛物线的一部分,,且恰好等于圆的半径.
(1)若米,米,求与的值;
(2)若体育馆侧面的最大宽度不超过75米,求的取值范围.
已知函数,若函数的图象与函数的图象关于轴对称.
(1)求函数的解析式;
(2)若存在,使等式成立,求实数的取值范围.