设集合,,则( )
A. B. C. D.
已知函数.
(1)求不等式的解集;
(2)正数满足,证明:.
在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)直线与轴的交点为,经过点的直线与曲线交于两点,若,求直线的倾斜角.
已知函数.
(1)讨论函数的极值点的个数;
(2)若有两个极值点,证明:.
设椭圆的离心率是,直线被椭圆C截得的弦长为.
(1)求椭圆C的方程;
(2)已知点,斜率为的直线l与椭圆C交于不同的两点A,B,当的面积最大时,求直线l的方程.
如图,在三棱锥中,是边长为的正三角形,,,.
(1)证明:平面平面;
(2)点在棱上,且,求二面角的大小.