已知椭圆,且椭圆C上恰有三点在集合中.
(1)求椭圆C的方程;
(2)若点O为坐标原点,直线AB与椭圆交于A、B两点,且满足,试探究:点O到直线AB的距离是否为定值.如果是,请求出定值:如果不是,请明说理由.
(3)在(2)的条件下,求面积的最大值.
在四棱锥S-ABCD中,底面ABCD为长方形,底面,其中,,的可能取值为:①;②;③;④;⑤
(1)求直线与平面所成角的正弦值;
(2)若线段CD上能找到点E,满足的点有两个,分别记为,,求二面角的大小.
已知各项均为正数的等比数列的公比,且,是方程的两根,记的前n项和为.
(1)若,,依次成等差数列,求m的值;
(2)设,数列的前n项和为,若,求n的最小值;
已知抛物线的焦点为F,点在抛物线C上,且.
(1)求抛物线C的方程及的值;
(2)设点O为坐标原点,过抛物线C的焦点F作斜率为的直线l交抛物线于,两点,点Q为抛物线C上异于M、N的一点,若,求实数t的值.
在正方体中,棱长为1.
(1)求直线BC与直线所成角的余弦值;
(2)求点A到平面的距离.
设:实数x满足;:实数x满足,其中实数.已知是的充分不必要条件,求实数的取值范围.