满分5 > 高中数学试题 >

为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑...

为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:Cx=若不建隔热层,每年能源消耗费用为8万元。设fx)为隔热层建造费用与20年的能源消耗费用之和。

)求k的值及f(x)的表达式。

)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。

 

,因此.,当隔热层修建厚时,总费用达到最小值为70万元。 【解析】 【解析】 (Ⅰ)设隔热层厚度为,由题设,每年能源消耗费用为. 再由,得,因此. 而建造费用为 最后得隔热层建造费用与20年的能源消耗费用之和为 (Ⅱ),令,即. 解得,(舍去). 当时,,当时,,故是的最小值点,对应的最小值为。 当隔热层修建厚时,总费用达到最小值为70万元。  
复制答案
考点分析:
相关试题推荐

已知动点到点和直线的距离相等.

1)求动点的轨迹方程;

2)记点,若,求的面积.

 

查看答案

在直三棱柱中,,且异面直线所成的角等于,设.

1)求的值;

2)求三棱锥的体积.

 

查看答案

设数据是郑州市普通职工个人的年收入,若这个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确的是(   )

A.年收入平均数大大增大,中位数一定变大,方差可能不变

B.年收入平均数大大增大,中位数可能不变,方差变大

C.年收入平均数大大增大,中位数可能不变,方差也不变

D.年收入平均数可能不变,中位数可能不变,方差可能不变

 

查看答案

定义域是一切实数的函数,其图像是连续不断的,且存在常数()使得

对任意实数都成立,则称是一个伴随函数.有下列关于伴随函数的结论:

是常数函数中唯一一个伴随函数

②“伴随函数至少有一个零点;

是一个伴随函数

其中正确结论的个数是 (    )

A.1个; B.2个; C.3个; D.0个;

 

查看答案

中,为钝角三角形的(

A.充分必要条件 B.必要不充分条件

C.充分不必要条件 D.既不充分也不必要条件

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.