利用证明:(其中k为整数)
已知,为两非零有理数列(即对任意的,,均为有理数),为一个无理数列(即对任意的,为无理数).
(1)已知,并且对任意的恒成立,试求的通项公式;
(2)若为有理数列,试证明:对任意的,恒成立的充要条件为;
(3)已知,,试计算.
一青蛙从点开始依次水平向右和竖直向上跳动,其落点坐标依次是,(如图,的坐标以已知条件为准),表示青蛙从点到点所经过的路程.
(1)点为抛物线准线上一点,点,均在该抛物线上,并且直线经过该抛物线的焦点,证明;
(2)若点要么落在所表示的曲线上,要么落在所表示的曲线上,并且,试写出(不需证明);
(3)若点要么落在所表示的曲线上,要么落在所表示的曲线上,并且,求的值.
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(Ⅰ)求k的值及f(x)的表达式。
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
已知动点到点和直线的距离相等.
(1)求动点的轨迹方程;
(2)记点,若,求的面积.
在直三棱柱中,,,且异面直线与所成的角等于,设.
(1)求的值;
(2)求三棱锥的体积.