集合 .
已知实数a、b、.
(1)若,求的最小值;
(2)若,求证:.
已知平面直角坐标系中,直线l的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.
(1)求直线l的普通方程以及曲线C的参数方程;
(2)过曲线C上任意一点E作与直线l的夹角为的直线,交l于点F,求的最小值.
已知椭圆C:的左、右焦点分别是,点,若的内切圆的半径与外接圆的半径的比是.
(1)求椭圆C的方程;
(2)点M是椭圆C的左顶点,P、Q是椭圆上异于左、右顶点的两点,设直线MP、MQ的斜率分别为、,若,试问直线PQ是否过定点?若过定点,求该定点坐标;若不过定点,请说明理由.
已知函数, .
(1)求函数的单调区间;
(2)当时,对任意的,存在,使得成立,试确定实数m的取值范围.
如图1所示,在等腰梯形ABCD中,,,垂足为E,,将沿EC折起到的位置,如图2所示,使平面平面ABCE.
(1)连结BE,证明:平面;
(2)在棱上是否存在点G,使得平面,若存在,直接指出点G的位置不必说明理由,并求出此时三棱锥的体积;若不存在,请说明理由.