已知函数,.
(1)若函数的图像与轴无交点,求的取值范围;
(2)若方程在区间上存在实根,求的取值范围;
(3)设函数,,当时若对任意的,总存在,使得,求的取值范围.
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元).
(Ⅰ)将y表示为x的函数;
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
已知函数.
(1)判断函数的奇偶性;
(2)证明:在上为单调增函数.
已知集合A={x |},.
(1)若a=1,求;
(2)若=R,求实数a的取值范围.
若正实数满足,则的最小值是( )
A. B. C. D.1
已知f(x)是奇函数且是R上的单调函数,若函数y=f(2x2+1)+f(λ-x)只有一个零点,则实数λ的值是
A. B. C. D.