已知全集,若,则______________.
若数列满足:存在正整数,对任意的,使得成立,则称为阶稳增数列.
(1)若由正整数构成的数列为阶稳增数列,且对任意,数列中恰有个,求的值;
(2)设等比数列为阶稳增数列且首项大于,试求该数列公比的取值范围;
(3)在(1)的条件下,令数列(其中,常数为正实数),设为数列的前项和.若已知数列极限存在,试求实数的取值范围,并求出该极限值.
已知数列的前项和为,且,.
(1)试写出数列的任意前后两项(即、)构成的等式;
(2)用数学归纳法证明:.
设角,,其中:
(1)若,求角的值;
(2)求的值.
某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付酬方案:
第一种,每天支付元,没有奖金;
第二种,每天的底薪元,另有奖金.第一天奖金元,以后每天支付的薪酬中奖金比前一天的奖金多元;
第三种,每天无底薪,只有奖金.第一天奖金元,以后每天支付的奖金是前一天的奖金的倍.
(1)工作天,记三种付费方式薪酬总金额依次为、、,写出、、关于的表达式;
(2)该学生在暑假期间共工作天,他会选择哪种付酬方式?
已知数列满足,.
(1)求证:数列是等比数列;
(2)求数列的通项公式.