程的解为______.
函数的值域是______.
已知集合则__________.
已知函数的定义域为实数集,及整数、;
(1)若函数,证明;
(2)若,且(其中为正的常数),试证明:函数为周期函数;
(3)若,且当时,,记,求使得小于1000都成立的最大整数.
已知点在上,以为切点的的切线的斜率为,过外一点(不在轴上)作的切线、,点、为切点,作平行于的切线(切点为),点、分别是与、的交点(如图):
(1)用、的纵坐标、表示直线的斜率;
(2)若直线与的交点为,证明是的中点;
(3)设三角形面积为,若将由过外一点的两条切线及第三条切线(平行于两切线切点的连线)围成的三角形叫做“切线三角形”,如,再由、作“切线三角形”,并依这样的方法不断作切线三角形……,试利用“切线三角形”的面积和计算由抛物线及所围成的阴影部分的面积
已知函数:
(1)若在区间上最大值为4,最小值为1,求、的值;
(2)若,关于的方程,有3个不同的实数解,求实数的值.