已知某市2015年全年空气质量等级如表1所示.
表1
空气质量等级(空气质量指数(AQI)) | 频数 | 频率 |
优() | 83 | 22.8% |
良() | 121 | 33.2% |
轻度污染() | 68 | 18.6% |
中度污染() | 49 | 13.4% |
重度污染() | 30 | 8.2% |
严重污染() | 14 | 3.8% |
合计 | 365 | 100% |
2016年5月和6月的空气质量指数如下:
5月 240 80 56 53 92 126 45 87 56 60
191 62 55 58 56 53 89 90 125 124
103 81 89 44 34 53 79 81 62 116
88
6月 63 92 110 122 102 116 81 163 158 76
33 102 65 53 38 55 52 76 99 127
120 80 108 33 35 73 82 90 146 95
选择合适的统计图描述数据,并回答下列问题:
(1)分析该市2016年6月的空气质量情况.
(2)比较该市2016年5月和6月的空气质量,哪个月的空气质量较好?
(3)比较该市2016年6月与该市2015年全年的空气质量,2016年6月的空气质量是否好于去年?
请班上每位同学估计一下自己平均每天的课外学习时间(单位:min),然后统计数据,作出全班同学课外学习时间的频率分布直方图.能否由这个频率分布直方图估计出你们学校全体学生课外学习时间的分布情况?可以用它来估计你所在地区(城市、乡镇或村庄)全体学生课外学习时间的分布情况吗?为什么?
如图,胡晓统计了他爸爸9月的手机通话明细清单,发现他爸爸该月共通话60次.胡晓按每次通话时间长短进行分组(每组为左闭右开的区间),画出了频率分布直方图.
(1)通话时长在区间,内的次数分别为多少?
(2)区间上的小长方形高度低于上的小长方形的高度,说明什么?
从某小区抽取100户居民用户进行月用电量调查,发现他们的用电量都在之间,进行适当分组后(每组为左闭右开的区间),画出频率分布直方图如图所示.
(1)直方图中x的值为________;
(2)在被调查的用户中,用电量落在区间内的户数为________.
已知函数:f(x)=x2﹣mx﹣n(m, n∈R).
(1)若m+n=0,解关于x的不等式f(x)≥x(结果用含m式子表示);
(2)若存在实数m,使得当x∈[1,2]时,不等式x≤f(x)≤4x恒成立,求实数n的取值范围.
已知函数:
(1)若,求y=f(x)的最大值和最小值,并写出相应的x值;
(2)将函数y=f(x)的图象向右平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,区间[a,b](a,b∈R且a<b)满足:y=g(x)在[a,b]上至少含有20个零点,在所有满足上述条件的[a,b]中,求b﹣a的最小值.