已知集合,集合,则______.
已知椭圆:(),过原点的两条直线和分别与交于点、和、,得到平行四边形.
(1)若,,且为正方形,求该正方形的面积.
(2)若直线的方程为,和关于轴对称,上任意一点到和的距离分别为和,证明:.
(3)当为菱形,且圆内切于菱形时,求,满足的关系式.
已知,,…,是由()个整数,,…,按任意次序排列而成的数列,数列满足().
(1)当时,写出数列和,使得.
(2)证明:当为正偶数时,不存在满足()的数列.
(3)若,,…,是,,…,按从大到小的顺序排列而成的数列,写出(),并用含的式子表示.
(参考:.)
如图,某地要在矩形区域内建造三角形池塘,、分别在、边上.米,米,,设,.
(1)试用解析式将表示成的函数;
(2)求三角形池塘面积的最小值及此时的值.
如图,已知点是单位圆上一点,且位于第一象限,以轴的正半轴为始边、为终边的角设为,将绕坐标原点逆时针旋转至.
(1)用表示、两点的坐标;
(2)为轴上异于的点,若,求点横坐标的取值范围.
已知三棱柱的底面为直角三角形,两条直角边和的长分别为4和3,侧棱的长为10.
(1)若侧棱垂直于底面,求该三棱柱的表面积.
(2)若侧棱与底面所成的角为,求该三棱柱的体积.