满分5 > 高中数学试题 >

甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,乙的中靶概率为0.9,求...

甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,乙的中靶概率为0.9,求下列事件的概率:

1)两人都中靶;

2)恰好有一人中靶;

3)两人都脱靶;

4)至少有一人中靶.

 

(1)0.72 (2)0.26 (3)0.02 (4)0.98 【解析】 设“甲中靶”,“乙中靶”.从要求的概率可知,需要先分别求A,B的对立事件的概率.并利用构建相应的事件,根据独立事件概率计算即可得解. 设“甲中靶”, “乙中靶”,则“甲脱靶”,“乙脱靶”,由于两个人射击的结果互不影响,所以A与B相互独立,A与,与B,与都相互独立 由已知可得,. (1) “两人都中靶”,由事件独立性的定义 得 (2)“恰好有一人中靶” ,且与互斥 根据概率的加法公式和事件独立性定义,得 (3)事件“两人都脱靶”, 所以 (4)方法1:事件“至少有一人中靶”,且AB,与两两互斥, 所以 方法2:由于事件“至少有一人中靶”的对立事件是“两人都脱靶” 根据对立事件的性质,得事件“至少有一人中靶”的概率为
复制答案
考点分析:
相关试题推荐

一个袋子中有标号分别为12344个球,除标号外没有其他差异.采用不放回方式从中任意摸球两次.设事件第一次摸出球的标号小于3”,事件第二次摸出球的标号小于3”,那么事件A与事件B是否相互独立?

 

查看答案

已知是定义在上的函数,记的最大值为.若存在,满足,则称一次函数的“逼近函数”,此时的称为上的“逼近确界”.

(1)验证:的“逼近函数”;

(2)已知.若的“逼近函数”,求的值;

(3)已知的逼近确界为,求证:对任意常数.

 

查看答案

数列的前n组成集合,从集合中任取个数,其所有可能的k个数的乘积的和为(若只取一个数,规定乘积为此数本身),例如:对于数列,当时,时,

1)若集合,求当时,的值;

2)若集合,证明:时集合时集合(为了以示区别,用表示)有关系式,其中

3)对于(2)中集合.定义,求(用n表示).

 

查看答案

已知直线为公海与领海的分界线,一艘巡逻艇在原点处发现了北偏东 海面上处有一艘走私船,走私船正向停泊在公海上接应的走私海轮航行,以便上海轮后逃窜.已知巡逻艇的航速是走私船航速的2倍,且两者都是沿直线航行,但走私船可能向任一方向逃窜.

1)如果走私船和巡逻船相距6海里,求走私船能被截获的点的轨迹;

2)若与公海的最近距离20海里,要保证在领海内捕获走私船,则之间的最远距离是多少海里?

 

查看答案

已知函数.

1)求函数上的单调递增区间;

2)将函数的图象向左平移个单位长度,再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象.求证:存在无穷多个互不相同的整数,使得.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.