某省在2017年启动了“3+3”高考模式.所谓“3+3”高考模式,就是语文、数学、外语(简称语、数、外)为高考必考科目,从物理、化学、生物、政治、历史、地理(简称理、化、生、政、史、地)六门学科中任选三门作为选考科目.该省某中学2017级高一新生共有990人,学籍号的末四位数从0001到0990.
(1)现从高一学生中抽样调查110名学生的选考情况,问:采用什么样的抽样方法较为恰当?(只写出结论,不需要说明理由)
(2)据某教育机构统计,学生所选三门学科在将来报考专业时受限制的百分比是不同的.该机构统计了受限百分比较小的十二种选择的百分比值,制作出如下条形图.
设以上条形图中受限百分比的均值为,标准差为.如果一个学生所选三门学科专业受限百分比在区间内,我们称该选择为“恰当选择”.该校李明同学选择了化学,然后从余下五门选考科目中任选两门.问李明的选择为“恰当选择"的概率是多少?(均值,标准差均精确到0.1)
(参考公式和数据:,)
如图,已知四棱锥的底面是菱形,,,为边的中点,点在线段上.
(1)证明:平面平面;
(2)若,平面,求四棱锥的体积.
设等差数列的前项和为,公差,,成等比数列.
(1)求数列的通项公式;
(2)设,求数列的前项和.
斜率为1的直线过抛物线的焦点,若与圆相切,则等于______.
已知等比数列前项和为,则数列前项和为 _________.
设变量,满足约束条件,则目标函数的最大值为______.