已知函数,
(1)当时,求不等式的解集;
(2)若不等式的解集包含,求的取值范围.
在直角坐标系中,曲线的参数方程为(为参数,),曲线的参数方程为(为参数).
(1)求曲线,的普通方程;
(2)若曲线上一点到曲线的距离的最大值为,求.
已知函数.
(1)当时,讨论函数的单调性;
(2)若不等式对于任意恒成立,求正实数的取值范围.
已知点在椭圆:上,且点到的左、右焦点的距离之和为.
(1)求的方程;
(2)设为坐标原点,若的弦的中点在线段(不含端点,)上,求的取值范围.
某省在2017年启动了“3+3”高考模式.所谓“3+3”高考模式,就是语文、数学、外语(简称语、数、外)为高考必考科目,从物理、化学、生物、政治、历史、地理(简称理、化、生、政、史、地)六门学科中任选三门作为选考科目.该省某中学2017级高一新生共有990人,学籍号的末四位数从0001到0990.
(1)现从高一学生中抽样调查110名学生的选考情况,问:采用什么样的抽样方法较为恰当?(只写出结论,不需要说明理由)
(2)据某教育机构统计,学生所选三门学科在将来报考专业时受限制的百分比是不同的.该机构统计了受限百分比较小的十二种选择的百分比值,制作出如下条形图.
设以上条形图中受限百分比的均值为,标准差为.如果一个学生所选三门学科专业受限百分比在区间内,我们称该选择为“恰当选择”.该校李明同学选择了化学,然后从余下五门选考科目中任选两门.问李明的选择为“恰当选择"的概率是多少?(均值,标准差均精确到0.1)
(参考公式和数据:,)
如图,已知四棱锥的底面是菱形,,,为边的中点,点在线段上.
(1)证明:平面平面;
(2)若,平面,求四棱锥的体积.